
Cloud Data Center Resource Demand Prediction Model Development on

Apache Spark

Moh Moh Than1, Thandar Thein2

University of Computer Studies, Yangon1, University of Computer Studies (Maubin) 2

mohmohthan@ucsy.edu.mm1, thandartheinn@gmail.com2

Abstract

Dynamic resource allocation in cloud data

centers is a challenging problem. Resource

prediction is a key feature for on-demand resource

planning and efficient resource management of

dynamic workload. This requires a highly accurate

demand prediction. Hyper-parameter optimization

can largely affect the performance of the prediction

model. The process of identifying the optimal

parameters for a machine learning (ML) algorithm

involves the search for a broad range of value

combinations of parameter sets. This paper presents

a resource demand prediction model with the cloud

computational frameworks Apache™ Hadoop® and

Apache Spark™. The model is developed on the

powerful ML technique, Decision Tree (DT)

algorithm, and hyper-parameter optimization for DT

algorithm is performed to achieve the prediction

model with high accuracy. The evaluation of

prediction model is conducted on real data center

workload traces and the evaluation results show that

hyper-parameter optimization can save the

prediction error significantly.

Keywords: Apache Hadoop, Apache Spark, Hyper-

parameter Optimization, Machine Learning,

Resource Prediction

1. Introduction

Cloud computing allows contemporary

business owners to rent and use resources or services

needed to run their businesses in a pay-as-you-go

manner [1]. Cloud data centers provide low-cost,

flexible and powerful executing environment for

users. The resource demand to data centers is often

dynamic, changing as the overall data centers

workload. The cloud provider must ensure they have

enough resources to meet the resource amount

needed for incoming requests. Accurate resource

demand prediction is essential to allocate resources

dynamically and effectively.

Machine learning is mostly used to predict the

resource usage by different tasks under current

workloads. It is a subfield of data mining area charge

for modeling systems from real examples of their

past behavior. These models can then be used to

predict future behaviors. Modern supervised ML

algorithms involve hyper-parameters which define

the model architecture that have to be set before

running them. An important task in ML is model

selection to find the best parameters for the model of

a given task. Hyper-parameter optimization can

largely affect the predictive performance of ML

algorithms [2].

In this paper, DT algorithm is applied to

develop the CPU resource demand prediction model

for the cloud data center. To find the model that can

predict more accurate result, the performance of DT

algorithm is enhanced by hyper-parameter

optimization. Apache Spark is used as backend

processing engine, as it is better suited for iterative

applications, such as Data Mining and Machine

Learning [3].

The rest of this paper is organized as follows.

Section 2 describes literature review, section 3

presents preliminary, section 4 discusses details

about resource demand prediction model

development, section 5 presents experiments and

results discussion, and finally section 6 provides

concluding remarks.

2. Literature Review

Resource demand prediction is needed for

efficient resource management of dynamic workload

for cloud data centers. Several researches concerning

cloud data center resource demand prediction with

different ML algorithms are discussed in this section.

The authors [4] investigated three different

methods: Linear Regression (LR), Adaptive Neuro-

Fuzzy Inference Systems (ANFIS), and Nonlinear

Autoregressive Network (NAR) to predict CPU-cores

and memory consumption in the Google cluster trace.

NAR predicts more accurately (MAPE less than

30

7.1%) than the others and uses short time for training

and prediction.

The paper [5] proposed a resource demand

prediction framework to predict the CPU demand in

multi-tenant service cloud environments. The

proposed framework employs data mining

techniques, which extract high level characteristics

from historical demand behavior and provision

resources in advance. They applied Polynomial

regression (PR), Auto-regressive with external input

(ARX) and Autoregressive moving average with

external input (ARMAX) prediction techniques. They

observed that ARX gives the more precise result

(MSE 0.075) and less error compared to other

techniques.

A. Mozo et al. [6] presented the use of

convolutional neural networks (CNNs) to forecast

short-term changes in the amount of traffic crossing a

data center network. They validated their approach

with the experiments using a dataset collected at the

core network of an Internet Service Provider. They

ran a set of experiments to compare the accuracy of

the CNN, artificial neural networks (ANN) and

Autoregressive integrated moving average (ARIMA)

models by computing mean absolute error. The

obtained results show that CNN models outperform

both ARIMA and ANNs in both mean squared error

and mean absolute error.

Although they used different ML algorithms

for resource demand prediction, they didn’t consider

enhancing the prediction accuracy of algorithms. The

process of identifying optimal hyper-parameters that

enhance the performance of DT algorithm is studied

in [7] to find the model that can predict more

accurate result.

3. Preliminary

This section describes the experiment

workload traces, DT algorithm and prediction

measurement metric used for this work.

3.1. Experiment Workload Traces

There are enormous collection of workload

traces (datasets) of a variety of High Performance

Computing especially for Cluster and Grid

Computing. Three real-life workload traces chosen

for the experimentation are the DAS2 dataset

(Distributed ASCI in Netherlands Supercomputer-2)

with 225711 instances, the RICC dataset (RIKEN

Integrated Cluster of Clusters) with 447794

instances, the MetaCentrum dataset (Czech National

Grid Infrastructure MetaCentrum) with 103656

instances. All the datasets are publicly available at

Parallel Workload Archive [8]. They contain trace of

several thousands of jobs with continuous variables

(numerical data).

3.2. Decision Tree Algorithm

Decision Tree algorithms are a popular choice,

since they are robust and efficient to construct.

Moreover, they have the advantage of producing

comprehensible models and satisfactory accuracy

levels in several application domains. Like most of

the Machine Leaning algorithms, these algorithms

have some hyper-parameters whose values directly

affect the performance of the induced models.

DT works reasonably well with the default

values of the hyper-parameters specified in software

packages. Nevertheless, tuning the hyper-parameters

can improve the performance of DT.

3.3. Prediction Measurement Metric

To measure the prediction accuracy, the most

popular evaluation metric Mean Absolute Error

(MAE) as in (1) is used. The accuracy of a predictor

is estimated by computing an error based on the

difference between the predicted value yi’ and the

actual known value yi for each of test instances, d is

the number of instances.

𝑀𝐴𝐸 =
∑ |𝑦𝑖−𝑦𝑖

′|d
i=1

𝑑

4. Resource Demand Prediction Model

Development

The system for constructing cloud data center

resource demand prediction model is illustrated in

Figure 1. Resource demand prediction model predicts

the amount of CPU to allocate for each request in a

data center.

The proposed system to develop the CPU

resource demand prediction model is implemented by

using Hadoop Distributed File System (HDFS) [9],

Spark processing engine and Spark Machine

Learning Library (Spark MLib) [10]. It consists of

three layers and the function of each layer is

described as follow:
Storage Layer: HDFS is used to provide scalable and

reliable data storage.

Processing Layer: Yarn Cluster Manager and Spark

executor are used to process data in-parallel on

(1)

31

clusters of commodity hardware in a reliable and

fault-tolerant manner.

Analytic Layer: To generate the resource demand

prediction model, data pre-processing, hyper-

parameter optimization, models development and

evaluation, and model selection are performed. All of

the processes from Analytic Layer are executed in

parallel manner by using Spark engine. The

procedures of resource demand prediction are

implemented by using Spark MLib.

Figure 1. Proposed system architecture

4.1. Data Pre-processing

This involves pre-processing historical

workload traces by filtering out unnecessary

information from raw data. It removes or reduces the

noise data and the treatment of missing values by

replacing a missing value with the most commonly

occurring value for that attribute. It identifies or

removes the outliers, and also resolves

inconsistencies. The pre-processed workload traces

are divided into three disjoint parts: training data set

needed to build (or fit) the models, testing data set

used to estimate the test error for model selection and

validation data set used for validating the selected

model respectively.

4.2. Resource Demand Prediction

The resource demand prediction models are

generated setting all possible combinations of hyper-

parameter values. The prediction results of the

generated models are analyzed to select the resource

demand prediction model with the lowest error. After

the best model selection, it is validated whether to

check it can predict the correct number of the CPU

demand. The procedure of resource demand

prediction is presented in Figure 2.

Procedure: Resource_Demand_Prediction

Input: pre-processed workload traces

Output: predicted resource demand

1. Begin

2. Develop the prediction model by using

default hyper-parameter values of DT

-Evaluate model accuracy (minMAEMAE)

3. for(MaxDepth=0,MaxDepth<=30,MaxDept

h ++)

4. for(MinInfoGain=0,MinInfoGain<=1,

MinInfoGain +=0.1)

5. Develop the prediction model by using

MaxDepth and MinInfoGain for DT

 -Evaluate model accuracy (print MAE)

6. if (minMAE>MAE) minMAEMAE

7. endif

8. endfor// MinInfoGain

9. endfor// MaxDepth

10. Predict resource demand by using

selected model with minMAE

11. End

Figure 2. Procedure of resource demand

prediction

4.2.1. Hyper-parameter Optimization

Hyper-parameter optimization for Decision

Tree (DT) algorithm is operated over the training

dataset intended to effective model development.

This explores the optimal parameter values for the

DT.

In the approach of hyper-parameter

optimization, it needs to determine the parameter

setting for the learning algorithm that will produce

models with low error rate. One of the parameters

chosen for optimization is the Maximum tree depth

(MaxDepth) - the tree can grow to, as it is shown to

affect DT performance [11]. The next parameter is

Minimum Information Gain (MinInfoGain) - no split

Processing Layer

Data Node

HDFS

Name Node
Secondary

Name Node

Data Node Data Node. . .

Storage Layer

Analytic Layer

Testing
data

Training

data

Data

Preprocessing

Model Selection

Resource prediction

model construction

with DT Algorithm

Models

M1 .Mn

Resource demand prediction

Predicted
resource

Validation
data

Workload

traces

Hyper-parameter

Optimization for

DT Algorithm

Resource
Prediction

Model

Executor

Task

Cache

Node Manager

...

Yarn Cluster Manager

Executor

Task

Cache

Node Manager

Executor

Task

Cache

Node Manager

Incoming requests

new
 requests

Spark

Context

32

candidate leads to an information gain greater than

MinInfoGain [7]. The following range and step sizes

for each of the selected hyper-parameter values are

set for the corresponding datasets:

Maximum tree depth: A decision tree with depths

can be ranged from 0 to 30. In this study, MaxDepth

is set 31 different values from 0 to 30 with step size

1.

Minimum information gain: For a node to be split

further, the split must improve at least this much (in

terms of information gain). MinInfoGain is set 11

different values from 0 to 1, step of 0.1 for all three

datasets.

These settings result in a uniform point cover

of 341 (31 MaxDepth values x 11 MinInforGain

values) different combination parameter sets for each

dataset.

4.2.2. Prediction Models Construction

The prediction models are generated by using

DT algorithm based on all possible combinations of

hyper-parameters pairs and all features provided in

training data. In this study, 341 models are developed

by using all possible combinations of 31 MaxDepth

values and 11 MinInfoGain values for each dataset

with same input and different parameters. The

accuracy of the generated models is evaluated on

testing data.

4.2.3. Model Selection

The resource demand prediction model with

the lowest error rate is selected for each dataset by

analyzing the accuracy of the models generated with

all possible combinations of hyper-parameter values.

The best model is feed to the validation dataset

whether to check it can predict the correct number of

the CPU demand. The CPU demand of incoming

requests will be predicted by using the finally chosen

model.

5. Experiments and Results Discussion

The required system specification, the

experiment results comparison and analysis are

presented in this section.

5.1. Experiment Specification

In this experiment, Spark data processing

engine is developed using a virtual machine. The

specifications of devices and necessary software

component are presented in Table 1.

Table 1. System Specification

OS Ubuntu 16.04 LTS

Host

Specification

Intel ® Core i7-7500U

CPU @ 2.90GHz,

8GB Memory,

1TB Hard Disk

VM

Specification

4GB RAM,

100 GB Hard Disk

Software

Component

- Apache Hadoop 2.6.0

- Apache Spark 1.5.2

- Scala version 2.10.4

5.2. Comparison and Analysis

The accuracy of resource demand prediction

varies depending on each set of parameter values and

the characteristics of the workload dataset. Each set

of all different combination parameter sets for each

dataset were input to the DT algorithm to generate

the prediction models based on a set of training data.

The prediction performance of the considered models

is evaluated on test set and MAE obtained for each

model was recorded together with the set of

parameter values that generated it.

Table 2. MAE results of generated models using

different combinations of hyper-parameters

(DAS2)

Max

Depth

MinInfoGain

0.0 0.1 0.2 0.3 0.4

0 13.16 13.16 13.16 13.16 13.16

1 5.96 5.96 5.96 5.96 5.96

2 2.37 2.37 2.37 2.37 2.37

3 1.93 1.93 1.93 1.93 1.93

4 1.49 1.49 1.49 1.49 1.49

5 1.59 1.59 1.52 1.52 1.51

6 1.34 1.34 1.46 1.46 1.46

7 1.26 1.28 1.46 1.46 1.46

8 1.27 1.18 1.45 1.46 1.46

9 1.80 1.17 1.44 1.44 1.44

10 1.92 1.20 1.46 1.47 1.47

11 1.60 1.18 1.45 1.45 1.45

12 1.66 1.22 1.48 1.46 1.46

13 1.55 1.24 1.50 1.47 1.48

14 1.58 1.23 1.48 1.46 1.46

15 1.52 1.23 1.48 1.45 1.46

16 1.53 1.23 1.48 1.45 1.46

17 1.53 1.23 1.48 1.45 1.46

18 1.52 1.23 1.48 1.46 1.46

19 1.52 1.23 1.48 1.46 1.46

20 1.52 1.23 1.48 1.46 1.46

33

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
A

E

MaxDepth

0

5

10

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
A

E

MaxDepth

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
A

E

MaxDepth

Sample results for MAE values of generated

models against combinations of hyper-parameter set

pairs (0 to 20 MaxDepth values and 0.0 to 0.4

MinInforGain values) for DAS2 dataset are shown in

Table 2. After analyzing the prediction results of 341

generated models for DAS2 dataset having maximum

MAE = 13.16 and minimum MAE = 1.17, the model

which has minimum MAE is observed in

MinInfoGain = 0.1. The error rate does not vary

much with changes in higher MaxDepth values

(above 16) for all MinInfoGain values as shown in

Table 2.

Figure 3. MAE results of generated models using

different MaxDepth values with MinInfoGain =

0.1 (DAS2)

MAE results of generated models against 15

different MaxDepth values with the optimal

MinInfoGain = 0.1 for DAS2 dataset are shown in

Figure 3. The error rate is generally lower for

MaxDepth = 8 to 11. From comparing the prediction

results of the generated models, the model with

hyper-parameter pair (MaxDepth = 9 and

MinInfoGain = 0.1) gives better result MAE = 1.17.

It is selected to predict the future CPU demand, as it

is the model with minMAE.

Figure 4. MAE results of generated models using

different MaxDepth values with MinInfoGain = 0

(RICC)

After analyzing the prediction results of

generated models for RICC dataset having maximum

MAE = 21.69 and minimum MAE = 0.98, the model

which has minimum MAE is observed in

MinInfoGain = 0. The error rate does not vary

significantly with changes in higher MaxDepth

values for all MinInfoGain values. MAE results of

the generated models against 15 different MaxDepth

values with the optimal MinInfoGain = 0 for RICC

dataset are clearly shown in Figure 4. The error rate

is generally lower for MaxDepth = 5 to 9. From

comparing the prediction results of the generated

models, the model with hyper-parameter pair

(MaxDepth = 7 and MinInfoGain = 0) gives better

result MAE = 0.98. It is chosen to predict the future

CPU demand, as it has the lowest error rate.

Figure 5. MAE results of generated models using

different MaxDepth values with MinInfoGain = 0

(MetaCentrum)

After analyzing the prediction results of

generated models for MetaCentrum dataset having

maximum MAE = 0.72 and minimum MAE = 0.25,

the model which has minimum MAE is observed in

MinInfoGain = 0. The error rate does not vary much

with changes in higher MaxDepth values for all

MinInfoGain values. MAE results of the generated

models against 15 different MaxDepth values with

the optimal MinInfoGain = 0 for MetaCentrum

dataset are presented in Figure 5. The error rate is

generally lower at MaxDepth = 6, 9, 10 and 11. From

comparing the prediction results of the generated

models, the model with hyper-parameter pair

(MaxDepth = 11 and MinInfoGain = 0) gives better

result MAE = 0.25. It is chosen to predict the future

CPU demand because it has the lowest error rate.

Figure 6. MAE comparisons of prediction models

with default and optimal hyper-parameters

0.0

0.5

1.0

1.5

DAS2 RICC Metacentum

M
A

E

Datasetswith default hyper-parameters
with optimal hyper-parameters

34

Figure 6 presents MAE comparisons of

prediction models generated by setting default and

optimal hyper-parameters for all three datasets. For

DAS2, MAE value of the generated model by using

default hyper-parameters is 1.59 and that by using

optimal hyper-parameter pair is 1.17, saving MAE by

26%. For RICC, MAE value of the generated model

by using default hyper-parameters is 1.35 and that by

using optimal hyper-parameter pair is 0.98, saving

MAE by 28%. For Metacentum, MAE value of the

generated model by using default hyper-parameters is

0.38 and that by using optimal parameter pair is 0.25,

saving MAE by 35%. Therefore, setting the optimal

hyper-parameters can significantly affect the

resulting model’s performance. The results show that

identifying the optimal hyper-parameter saves MAE

26%, 28% and 35% for the corresponding datasets

respectively.

The actual and predicted CPU demand for the

incoming requests of the validation dataset for DAS2

is presented in Figure 7.

Figure 7. Actual and predicted CPU demand

(DAS2)

Figure 8 illustrates the actual and predicted

CPU demand for the incoming requests of the

validation dataset for RICC.

Figure 8. Actual and predicted CPU demand

(RICC)

In Figure 9, the comparison of the actual and

predicted CPU demand for the incoming requests of

the validation dataset for MetaCentrum is shown.

Figure 9. Actual and predicted CPU demand

(MetaCentrum)

The results show that the actual and the

predicted CPU demand by the proposed models for

all three workload traces are nearly the same.

6. Conclusion

Resource demand prediction is a key feature

for efficient resource management of dynamic

workload for cloud data centers. In this paper, CPU

resource demand prediction model implemented on

Apache Spark is presented. The resource demand

prediction model with low error rate is developed via

hyper-parameter optimization. The prediction system

is evaluated on real world workload data in cloud

computing and high-performance computing

paradigms. Experiment results show that the

prediction model generated by setting the optimal

hyper-parameters can significantly affect the

resulting model’s performance saving MAE round

about 30%. It can be observed that the predicted CPU

demand by the proposed models are as same as the

actual CPU demand.

References

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg,

I. Brandic, “Cloud computing and emerging IT

platforms: Vision, hype, and reality for

delivering computing as the 5th utility”, Journal

of Future Generation Computer Systems, Vol.

25 Issue. 6, June, 2009, pp. 599–616.

[2] M. Feurer, T. Springenberg, and F. Hutter,

“Initializing bayesian hyperparameter

optimization via meta-learning,” in Proceedings
0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

C
P

U
 u

sa
g

e

Job ID
actual predicted

0

50

100

150

0 10 20 30 40 50 60 70 80 90 100

C
P

U
 u

sa
g

e

Job IDactual predicted

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90 100

C
P

U
 u

sa
g

e

Job ID
actual predicted

35

of the Twenty- Ninth AAAI Conference on

Artificial Intelligence, Jan. 2015, pp. 1128-1135.

[3] J. Fu, J. Sun, K. Wang, “SPARK—A Big Data

Processing Platform for Machine Learning”, in

Proceedings of IEEE International Conference

on Industrial Informatics - Computing

Technology, Intelligent Technology, Industrial

Information Integration, 2016, pp. 48-51.

[4] T.L. Anh, J. Tordsson, Workload prediction for

resource management in data centers,

Computational Science and Engineering, 2016.

[5] M. Verma, G. R. Gangadharan, R. Vadlamani,

N. C. Narendra, "Resource demand prediction in

multi-tenant service clouds". IEEE International

Conference on Cloud Computing for Emerging

Markets (CCEM), 2013.

[6] A. Mozo, B. Ordozgoiti, S. Canaval,

"Forecasting short-term data center network

traffic load with convolutional neural networks",

PLoS ONE 13(2): e0191939, February 6, 2018.

[7] M. Camilleri, F. Neri, "Parameter Optimization

in Decision Tree Learning by using Simple

Genetic Algorithms", WSEAS

TRANSACTIONS on COMPUTERS, Vol. 13,

2014, pp. 582–591.

[8] "Parallel Workloads Archive", Available at

"http://www.cs.huji.ac.il/labs/parallel/workload/"

[Online; accessed 5-September-2018]

[9] “Welcom to Apache Hadoop!”, Available at

“http://hadoop.apache.org/.” [Online; accessed

2-September-2018].

[10] “Spark MLib”, Available at “https://

spark.apache.org/mllib/.” [Online; accessed 2-

September-2018].

[11] "Decision Trees - RDD-based API", Available at

"https://spark.apache.org/docs/2.2.0/mllib-

decision-tree.html." [Online; accessed 5-

September-2018].

36

