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Abstract 

Dynamic resource allocation in cloud data 

centers is a challenging problem. Resource 

prediction is a key feature for on-demand resource 

planning and efficient resource management of 

dynamic workload. This requires a highly accurate 

demand prediction. Hyper-parameter optimization 

can largely affect the performance of the prediction 

model. The process of identifying the optimal 

parameters for a machine learning (ML) algorithm 

involves the search for a broad range of value 

combinations of parameter sets. This paper presents 

a resource demand prediction model with the cloud 

computational frameworks Apache™ Hadoop® and 

Apache Spark™. The model is developed on the 

powerful ML technique, Decision Tree (DT) 

algorithm, and hyper-parameter optimization for DT 

algorithm is performed to achieve the prediction 

model with high accuracy. The evaluation of 

prediction model is conducted on real data center 

workload traces and the evaluation results show that 

hyper-parameter optimization can save the 

prediction error significantly. 

Keywords: Apache Hadoop, Apache Spark, Hyper-

parameter Optimization, Machine Learning, 

Resource Prediction 

1. Introduction 

Cloud computing allows contemporary 

business owners to rent and use resources or services 

needed to run their businesses in a pay-as-you-go 

manner [1]. Cloud data centers provide low-cost, 

flexible and powerful executing environment for 

users. The resource demand to data centers is often 

dynamic, changing as the overall data centers 

workload. The cloud provider must ensure they have 

enough resources to meet the resource amount 

needed for incoming requests. Accurate resource 

demand prediction is essential to allocate resources 

dynamically and effectively. 

Machine learning is mostly used to predict the 

resource usage by different tasks under current 

workloads. It is a subfield of data mining area charge 

for modeling systems from real examples of their 

past behavior. These models can then be used to 

predict future behaviors. Modern supervised ML 

algorithms involve hyper-parameters which define 

the model architecture that have to be set before 

running them. An important task in ML is model 

selection to find the best parameters for the model of 

a given task. Hyper-parameter optimization can 

largely affect the predictive performance of ML 

algorithms [2]. 

In this paper, DT algorithm is applied to 

develop the CPU resource demand prediction model 

for the cloud data center. To find the model that can 

predict more accurate result, the performance of DT 

algorithm is enhanced by hyper-parameter 

optimization. Apache Spark is used as backend 

processing engine, as it is better suited for iterative 

applications, such as Data Mining and Machine 

Learning [3]. 

The rest of this paper is organized as follows. 

Section 2 describes literature review, section 3 

presents preliminary, section 4 discusses details 

about resource demand prediction model 

development, section 5 presents experiments and 

results discussion, and finally section 6 provides 

concluding remarks. 

 

2. Literature Review 

Resource demand prediction is needed for 

efficient resource management of dynamic workload 

for cloud data centers. Several researches concerning 

cloud data center resource demand prediction with 

different ML algorithms are discussed in this section. 

The authors [4] investigated three different 

methods: Linear Regression (LR), Adaptive Neuro-

Fuzzy Inference Systems (ANFIS), and Nonlinear 

Autoregressive Network (NAR) to predict CPU-cores 

and memory consumption in the Google cluster trace. 

NAR predicts more accurately (MAPE less than 
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7.1%) than the others and uses short time for training 

and prediction. 

The paper [5] proposed a resource demand 

prediction framework to predict the CPU demand in 

multi-tenant service cloud environments. The 

proposed framework employs data mining 

techniques, which extract high level characteristics 

from historical demand behavior and provision 

resources in advance. They applied Polynomial 

regression (PR), Auto-regressive with external input 

(ARX) and Autoregressive moving average with 

external input (ARMAX) prediction techniques. They 

observed that ARX gives the more precise result 

(MSE 0.075) and less error compared to other 

techniques. 

A. Mozo et al. [6] presented the use of 

convolutional neural networks (CNNs) to forecast 

short-term changes in the amount of traffic crossing a 

data center network. They validated their approach 

with the experiments using a dataset collected at the 

core network of an Internet Service Provider. They 

ran a set of experiments to compare the accuracy of 

the CNN, artificial neural networks (ANN) and 

Autoregressive integrated moving average (ARIMA) 

models by computing mean absolute error. The 

obtained results show that CNN models outperform 

both ARIMA and ANNs in both mean squared error 

and mean absolute error. 

Although they used different ML algorithms 

for resource demand prediction, they didn’t consider 

enhancing the prediction accuracy of algorithms. The 

process of identifying optimal hyper-parameters that 

enhance the performance of DT algorithm is studied 

in [7] to find the model that can predict more 

accurate result. 

3. Preliminary 

This section describes the experiment 

workload traces, DT algorithm and prediction 

measurement metric used for this work. 

3.1. Experiment Workload Traces 

There are enormous collection of workload 

traces (datasets) of a variety of High Performance 

Computing especially for Cluster and Grid 

Computing. Three real-life workload traces chosen 

for the experimentation are the DAS2 dataset 

(Distributed ASCI in Netherlands Supercomputer-2) 

with 225711 instances, the RICC dataset (RIKEN 

Integrated Cluster of Clusters) with 447794 

instances, the MetaCentrum dataset (Czech National 

Grid Infrastructure MetaCentrum) with 103656 

instances. All the datasets are publicly available at 

Parallel Workload Archive [8]. They contain trace of 

several thousands of jobs with continuous variables 

(numerical data). 

3.2. Decision Tree Algorithm  

Decision Tree algorithms are a popular choice, 

since they are robust and efficient to construct. 

Moreover, they have the advantage of producing 

comprehensible models and satisfactory accuracy 

levels in several application domains. Like most of 

the Machine Leaning algorithms, these algorithms 

have some hyper-parameters whose values directly 

affect the performance of the induced models. 

DT works reasonably well with the default 

values of the hyper-parameters specified in software 

packages. Nevertheless, tuning the hyper-parameters 

can improve the performance of DT. 

3.3. Prediction Measurement Metric 

To measure the prediction accuracy, the most 

popular evaluation metric Mean Absolute Error 

(MAE) as in (1) is used. The accuracy of a predictor 

is estimated by computing an error based on the 

difference between the predicted value yi’ and the 

actual known value yi for each of test instances, d is 

the number of instances. 

𝑀𝐴𝐸 =
∑ |𝑦𝑖−𝑦𝑖

′|d
i=1

𝑑
    

4. Resource Demand Prediction Model 

Development 

The system for constructing cloud data center 

resource demand prediction model is illustrated in 

Figure 1. Resource demand prediction model predicts 

the amount of CPU to allocate for each request in a 

data center. 

The proposed system to develop the CPU 

resource demand prediction model is implemented by 

using Hadoop Distributed File System (HDFS) [9], 

Spark processing engine and Spark Machine 

Learning Library (Spark MLib) [10]. It consists of 

three layers and the function of each layer is 

described as follow: 
Storage Layer: HDFS is used to provide scalable and 

reliable data storage. 

Processing Layer: Yarn Cluster Manager and Spark 

executor are used to process data in-parallel on 

(1) 
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clusters of commodity hardware in a reliable and 

fault-tolerant manner. 

Analytic Layer: To generate the resource demand 

prediction model, data pre-processing, hyper-

parameter optimization, models development and 

evaluation, and model selection are performed. All of 

the processes from Analytic Layer are executed in 

parallel manner by using Spark engine. The 

procedures of resource demand prediction are 

implemented by using Spark MLib. 

 

Figure 1. Proposed system architecture 

4.1. Data Pre-processing 

This involves pre-processing historical 

workload traces by filtering out unnecessary 

information from raw data. It removes or reduces the 

noise data and the treatment of missing values by 

replacing a missing value with the most commonly 

occurring value for that attribute. It identifies or 

removes the outliers, and also resolves 

inconsistencies. The pre-processed workload traces 

are divided into three disjoint parts: training data set 

needed to build (or fit) the models, testing data set 

used to estimate the test error for model selection and 

validation data set used for validating the selected 

model respectively. 

4.2. Resource Demand Prediction 

The resource demand prediction models are 

generated setting all possible combinations of hyper-

parameter values. The prediction results of the 

generated models are analyzed to select the resource 

demand prediction model with the lowest error. After 

the best model selection, it is validated whether to 

check it can predict the correct number of the CPU 

demand. The procedure of resource demand 

prediction is presented in Figure 2. 

 

Procedure: Resource_Demand_Prediction 

Input:  pre-processed workload traces  

Output: predicted resource demand 

1. Begin 

2. Develop the prediction model by using 

default hyper-parameter values of DT 

-Evaluate model accuracy (minMAEMAE) 

3. for(MaxDepth=0,MaxDepth<=30,MaxDept

h ++) 

4. for(MinInfoGain=0,MinInfoGain<=1,   

MinInfoGain +=0.1) 

5. Develop the prediction model by using 

MaxDepth and MinInfoGain for DT 

 -Evaluate model accuracy (print MAE) 

6. if (minMAE>MAE) minMAEMAE 

7. endif  

8. endfor// MinInfoGain 

9. endfor// MaxDepth 

10. Predict resource demand by using 

selected model with minMAE 

11. End 

Figure 2. Procedure of resource demand 

prediction 

 

4.2.1. Hyper-parameter Optimization 

Hyper-parameter optimization for Decision 

Tree (DT) algorithm is operated over the training 

dataset intended to effective model development. 

This explores the optimal parameter values for the 

DT. 

In the approach of hyper-parameter 

optimization, it needs to determine the parameter 

setting for the learning algorithm that will produce 

models with low error rate. One of the parameters 

chosen for optimization is the Maximum tree depth 

(MaxDepth) - the tree can grow to, as it is shown to 

affect DT performance [11]. The next parameter is 

Minimum Information Gain (MinInfoGain) - no split 
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candidate leads to an information gain greater than 

MinInfoGain [7]. The following range and step sizes 

for each of the selected hyper-parameter values are 

set for the corresponding datasets: 

Maximum tree depth: A decision tree with depths 

can be ranged from 0 to 30. In this study, MaxDepth 

is set 31 different values from 0 to 30 with step size 

1. 

Minimum information gain: For a node to be split 

further, the split must improve at least this much (in 

terms of information gain). MinInfoGain is set 11 

different values from 0 to 1, step of 0.1 for all three 

datasets. 

These settings result in a uniform point cover 

of 341 (31 MaxDepth values x 11 MinInforGain 

values) different combination parameter sets for each 

dataset. 

4.2.2. Prediction Models Construction 

The prediction models are generated by using 

DT algorithm based on all possible combinations of 

hyper-parameters pairs and all features provided in 

training data. In this study, 341 models are developed 

by using all possible combinations of 31 MaxDepth 

values and 11 MinInfoGain values for each dataset 

with same input and different parameters. The 

accuracy of the generated models is evaluated on 

testing data. 

4.2.3. Model Selection 

The resource demand prediction model with 

the lowest error rate is selected for each dataset by 

analyzing the accuracy of the models generated with 

all possible combinations of hyper-parameter values. 

The best model is feed to the validation dataset 

whether to check it can predict the correct number of 

the CPU demand. The CPU demand of incoming 

requests will be predicted by using the finally chosen 

model. 

 

5. Experiments and Results Discussion 

The required system specification, the 

experiment results comparison and analysis are 

presented in this section. 

5.1. Experiment Specification 

In this experiment, Spark data processing 

engine is developed using a virtual machine. The 

specifications of devices and necessary software 

component are presented in Table 1. 

Table 1. System Specification 

OS Ubuntu 16.04 LTS 

Host 

Specification 

Intel ® Core i7-7500U 

CPU @ 2.90GHz, 

8GB Memory, 

1TB Hard Disk 

VM 

Specification 

4GB RAM, 

100 GB Hard Disk 

Software  

Component 

- Apache Hadoop 2.6.0 

- Apache Spark 1.5.2 

- Scala version 2.10.4 

5.2. Comparison and Analysis 

The accuracy of resource demand prediction 

varies depending on each set of parameter values and 

the characteristics of the workload dataset. Each set 

of all different combination parameter sets for each 

dataset were input to the DT algorithm to generate 

the prediction models based on a set of training data. 

The prediction performance of the considered models 

is evaluated on test set and MAE obtained for each 

model was recorded together with the set of 

parameter values that generated it. 

Table 2. MAE results of generated models using 

different combinations of hyper-parameters 

(DAS2) 

Max 

Depth 

MinInfoGain 

0.0 0.1 0.2 0.3 0.4 

0 13.16 13.16 13.16 13.16 13.16 

1 5.96 5.96 5.96 5.96 5.96 

2 2.37 2.37 2.37 2.37 2.37 

3 1.93 1.93 1.93 1.93 1.93 

4 1.49 1.49 1.49 1.49 1.49 

5 1.59 1.59 1.52 1.52 1.51 

6 1.34 1.34 1.46 1.46 1.46 

7 1.26 1.28 1.46 1.46 1.46 

8 1.27 1.18 1.45 1.46 1.46 

9 1.80 1.17 1.44 1.44 1.44 

10 1.92 1.20 1.46 1.47 1.47 

11 1.60 1.18 1.45 1.45 1.45 

12 1.66 1.22 1.48 1.46 1.46 

13 1.55 1.24 1.50 1.47 1.48 

14 1.58 1.23 1.48 1.46 1.46 

15 1.52 1.23 1.48 1.45 1.46 

16 1.53 1.23 1.48 1.45 1.46 

17 1.53 1.23 1.48 1.45 1.46 

18 1.52 1.23 1.48 1.46 1.46 

19 1.52 1.23 1.48 1.46 1.46 

20 1.52 1.23 1.48 1.46 1.46 
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Sample results for MAE values of generated 

models against combinations of hyper-parameter set 

pairs (0 to 20 MaxDepth values and 0.0 to 0.4 

MinInforGain values) for DAS2 dataset are shown in 

Table 2. After analyzing the prediction results of 341 

generated models for DAS2 dataset having maximum 

MAE = 13.16 and minimum MAE = 1.17, the model 

which has minimum MAE is observed in 

MinInfoGain = 0.1. The error rate does not vary 

much with changes in higher MaxDepth values 

(above 16) for all MinInfoGain values as shown in 

Table 2. 

Figure 3. MAE results of generated models using 

different MaxDepth values with MinInfoGain = 

0.1 (DAS2) 

MAE results of generated models against 15 

different MaxDepth values with the optimal 

MinInfoGain = 0.1 for DAS2 dataset are shown in 

Figure 3. The error rate is generally lower for 

MaxDepth = 8 to 11. From comparing the prediction 

results of the generated models, the model with 

hyper-parameter pair (MaxDepth = 9 and 

MinInfoGain = 0.1) gives better result MAE = 1.17. 

It is selected to predict the future CPU demand, as it 

is the model with minMAE. 

Figure 4. MAE results of generated models using 

different MaxDepth values with MinInfoGain = 0 

(RICC) 

After analyzing the prediction results of 

generated models for RICC dataset having maximum 

MAE = 21.69 and minimum MAE = 0.98, the model 

which has minimum MAE is observed in 

MinInfoGain = 0. The error rate does not vary 

significantly with changes in higher MaxDepth 

values for all MinInfoGain values. MAE results of 

the generated models against 15 different MaxDepth 

values with the optimal MinInfoGain = 0 for RICC 

dataset are clearly shown in Figure 4. The error rate 

is generally lower for MaxDepth = 5 to 9. From 

comparing the prediction results of the generated 

models, the model with hyper-parameter pair 

(MaxDepth = 7 and MinInfoGain = 0) gives better 

result MAE = 0.98. It is chosen to predict the future 

CPU demand, as it has the lowest error rate. 

 

Figure 5. MAE results of generated models using 

different MaxDepth values with MinInfoGain = 0 

(MetaCentrum) 

After analyzing the prediction results of 

generated models for MetaCentrum dataset having 

maximum MAE = 0.72 and minimum MAE = 0.25, 

the model which has minimum MAE is observed in 

MinInfoGain = 0. The error rate does not vary much 

with changes in higher MaxDepth values for all 

MinInfoGain values. MAE results of the generated 

models against 15 different MaxDepth values with 

the optimal MinInfoGain = 0 for MetaCentrum 

dataset are presented in Figure 5. The error rate is 

generally lower at MaxDepth = 6, 9, 10 and 11. From 

comparing the prediction results of the generated 

models, the model with hyper-parameter pair 

(MaxDepth = 11 and MinInfoGain = 0) gives better 

result MAE = 0.25. It is chosen to predict the future 

CPU demand because it has the lowest error rate. 

Figure 6. MAE comparisons of prediction models 

with default and optimal hyper-parameters 
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Figure 6 presents MAE comparisons of 

prediction models generated by setting default and 

optimal hyper-parameters for all three datasets. For 

DAS2, MAE value of the generated model by using 

default hyper-parameters is 1.59 and that by using 

optimal hyper-parameter pair is 1.17, saving MAE by 

26%. For RICC, MAE value of the generated model 

by using default hyper-parameters is 1.35 and that by 

using optimal hyper-parameter pair is 0.98, saving 

MAE by 28%. For Metacentum, MAE value of the 

generated model by using default hyper-parameters is 

0.38 and that by using optimal parameter pair is 0.25, 

saving MAE by 35%. Therefore, setting the optimal 

hyper-parameters can significantly affect the 

resulting model’s performance. The results show that 

identifying the optimal hyper-parameter saves MAE 

26%, 28% and 35% for the corresponding datasets 

respectively. 

The actual and predicted CPU demand for the 

incoming requests of the validation dataset for DAS2 

is presented in Figure 7. 

 

Figure 7. Actual and predicted CPU demand 

(DAS2) 

Figure 8 illustrates the actual and predicted 

CPU demand for the incoming requests of the 

validation dataset for RICC. 

Figure 8. Actual and predicted CPU demand 

(RICC) 

In Figure 9, the comparison of the actual and 

predicted CPU demand for the incoming requests of 

the validation dataset for MetaCentrum is shown.  

Figure 9. Actual and predicted CPU demand 

(MetaCentrum) 

The results show that the actual and the 

predicted CPU demand by the proposed models for 

all three workload traces are nearly the same. 

6. Conclusion 

Resource demand prediction is a key feature 

for efficient resource management of dynamic 

workload for cloud data centers. In this paper, CPU 

resource demand prediction model implemented on 

Apache Spark is presented. The resource demand 

prediction model with low error rate is developed via 

hyper-parameter optimization. The prediction system 

is evaluated on real world workload data in cloud 

computing and high-performance computing 

paradigms. Experiment results show that the 

prediction model generated by setting the optimal 

hyper-parameters can significantly affect the 

resulting model’s performance saving MAE round 

about 30%. It can be observed that the predicted CPU 

demand by the proposed models are as same as the 

actual CPU demand. 
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